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Abstract— In recent years, transformer has attracted the
attention of many researchers in the field of remote sensing
due to its ability to model global information. However, it is
difficult to extract local features such as textures and edges of
images, thereby limiting the performance of transformer-based
hyperspectral image classification (HSIC). Currently, most exist-
ing transformer models for HSIC improve their performance by
combining the powerful feature extraction ability of convolution,
which also introduces a large number of trainable parameters
and increases model complexity. To address this issue, this
article proposes a dual attention transformer for attention head
interaction (DAHIT) for HSIC. First, a spatial local bias module
(SLBM) was designed in the spatial branch, which introduces
local priors to extract local features effectively without intro-
ducing numerous trainable parameters. Then, an attention head
interaction module (AHIM) was proposed, which can make the
interaction of information obtained by different attention heads.
Finally, a diagonal mask multiscale dual attention module (DAM)
was constructed in the spectral branch to enhance the attention to
the correlation among different spectral bands through diagonal
masks and then to extract features at different scales through
feature vectors. Through a series of experiments, the proposed
DAHIT is evaluated on four commonly used HSI datasets. The
experimental results show that compared with other advanced
methods, the proposed DAHIT method exhibits excellent clas-
sification performance, demonstrating the effectiveness of the
proposed method in HSIC.

Index Terms— Attention head, hyperspectral image classifica-
tion (HSIC), multihead attention, transformer.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) receive electromag-
netic signals within a narrow and dense wavelength

range through advanced sensors, obtaining spectral informa-
tion from hundreds of bands. HSIs have the characteristics
of spatial–spectral integration, containing rich spectral infor-
mation and spatial information of land cover. Hyperspectral
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data have been widely used in fields, such as environmental
monitoring [1], biomedicine [2], precision agriculture [3],
[4], and geological prospecting [5]. The purpose of HSI
classification (HSIC) is to assign unique category labels to
each sample of HSIs based on a given set of ground cover
categories.

After decades of development, both manual feature extrac-
tion methods and deep learning-based feature extraction
methods have made great progress in HSIC tasks. Traditional
manual feature extraction methods can select the most repre-
sentative band feature set through direct identification, such
as constrained band selection (CBS) [6] and clustering-based
band selection [7]. In addition to directly selecting the
band feature set, traditional manual feature extraction meth-
ods can also learn representative feature sets through linear
or nonlinear transformations, such as principal component
analysis (PCA) [8] and local linear embedding (LLE) [9].
Unlike traditional manual shallow feature extraction methods,
deep learning-based feature extraction methods extract dis-
criminative features in a hierarchical manner. For example,
convolutional neural networks (CNNs) [10], [11], [12], graph
CNNs (GCNs) [13], [14], [14], [16], graph attention networks
(GATs) [17], [18], generate adversarial networks (GANs) [19],
[20], and transformer [21], [22].

In recent years, in order to enable the classification network
of HSIs to be trained in one domain and achieve satisfactory
classification results in another different domain, the research
on cross-scene HSIC has attracted wide attention. Based on
the idea of domain generalization, Zhang et al. [51] proposed
a single-source domain expansion network (SDENet). SDENet
is trained in the source domain through generative adversarial
learning and tested in the target domain. The semantic encod-
ing and morphological encoder are used as generators, while
the discriminator using supervised contrastive learning (CL)
is used to learn domain-invariant representations. In order to
better utilize HSIs and light detection and ranging (LiDAR)
data, Zhang et al. [52] proposed a structural optimization
transmission network (SOT-Net). The complementary infor-
mation collaboration manner and the redundancy exclusion
operator was be redesigned in SOT-Net. The correlation of
multisource semantics is enhanced by SOT Net. To address
the issues of domain bias and prototype instability in training
and testing datasets in few-shot learning (FSL), Liu et al. [55]
proposed a refined prototypical CL network for FSL (RPCL-
FSL). RPCL-FSL integrates supervised CL and FSL into
end-to-end networks for small sample HSIC. To alleviate
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domain transfer in FSL, RPCL-FSL designed a fusion training
strategy to reduce feature differences between training and
testing datasets. To address the issue of insufficient labeled
samples in HSIC tasks, Liu et al. [57] proposed a method based
on self-supervised learning of spectral masking (SSLSM)
for HSIC. The training of SSLSM includes two steps: self-
supervised pretraining and fine-tuning. SSLSM uses spectral
reconstruction as a pretext task, and by reconstructing masked
spectra, the model’s feature extraction ability in classification
tasks during fine-tuning is greatly improved.

In order to better reduce the dimensionality of HSI spec-
tra, Gao et al. [49] proposed a deep learning-based band
selection method called DLBSTD, in which the represen-
tative bands with key target information can be extracted.
In order to better address the issue of class imbalance in
HSIs, Gao et al. [50] proposed a spectral aggregation and
separation network (SASN) with a target band random mask
(TBRM). Multiple representative background selection strate-
gies (MRBS) are used in the training sample set of SASN
to select diverse and representative background training sets.
GCNs are widely used in HSI classification tasks due to their
powerful feature learning ability. Qin et al. [53] extended the
original GCN to the second order, taking into account spectral
and spatial neighborhood information. To solve the problem
of adjacency matrix consuming a large amount of memory
resources in GCN. Liu et al. [54] proposed a fast dynamic
graph convolution and CNN parallel network (FDGC), which
can adaptively capture topology information and extend GCN
to large graphs. Due to the complex spatial variability of HSIs,
existing graph construction based on HSIs is always inaccu-
rate, and graph structure-based HSI methods often suffer from
oversmoothing issues. To address the aforementioned issues,
Yang et al. [58] proposed a deep network with adaptive graph
structure integration (DNAGSI). DNAGSI can dynamically
learn the graph structure of HSIs and improve the robustness of
the model. Moreover, a joint loss with center loss is proposed
in DNAGSI to learn the similarity relationship between HSI
pixels and aggregate the intraclass graph features.

In the field of computer vision, CNNs have become the most
widely used backbone networks. For CNN-based methods,
researchers have considered and designed many effective net-
works from the perspective of network framework [23], [24],
[25], [26], [27], [28] and effective module utilization [29],
[30], [31]. Due to the ability of 3-D convolution to extract
spatial–spectral joint features, He et al. [32] designed a
multiscale method based on 3-D convolution. Unlike tradi-
tional convolutions, Zhou et al. [33] proposed quaternion
CNNs (QCNNs). This network can extract quaternion features
that not only contain contextual information but also utilize
quaternion algebra within quaternion element units to express
structural information. Although the above methods can extract
local features of the image, the limited receptive field limits
the model’s feature extraction ability. Shi et al. [34] designed
an expansion convolution network (ECNet) based on dilation
convolution, which expands the receptive field by stacking
dilation convolutional layers and can extract more contex-
tual features. Paoletti et al. [25] proposed a deep residual
pyramid network (PyResNet). The depth of the network is

gradually increased by the form of residuals, which not only
allows to obtain a large receptive field but also avoids the
hindrance of the model to convergence. Since the shape of
the conventional convolutional receptive field is fixed, this
may lead to the spatial structure information being ignored.
To address the above problems, Shang et al. [35] proposed an
HSIC method based on multiscale cross-branch response and
second-order channel attention (MCRSCA). Zhu et al. [36]
proposed a DHCNet method based on deformable convolution.
Deformable convolution can make the receptive field of the
convolution variable and avoid the neglect of spatial structure
information. In order to combine the advantages of 2-D
convolution and 3-D convolution, Roy et al. [37] proposed
a hybrid spectral CNN (hybrid SN). To solve the problem of
GCN that only extracting features from superpixel nodes and
pixel-level features was ignored, Yu et al. [46] proposed a
two-branch deep GCN (TBDGCN), in which the pixel level
features can be extracted by CNNs. In TBGCN, a GCN
module with DropEdge technology and residual connections
was proposed to solve the problem of oversmoothing in GCN.
Huang et al. [47] proposed a two-branch attention adaptive DA
(TAADA) network that effectively utilizes the spectral–spatial
joint features of domain adaptation (DA) in HSIs. Although
CNNs have significant advantages in local feature extraction,
due to the limitations of receptive fields, they are unable to
obtain a global receptive field and capture global contextual
information.

HSIs have high spatial resolution and hundreds of spectral
bands. It is difficult to model the long-range dependence
of HSIs space and spectrum using CNN-based methods.
In recent years, transformer has been widely used in the
field of remote sensing due to its multihead self-attention
(MHSA) mechanism, achieving results comparable to or
even superior to CNNs. Vision transformer (VIT) proposed
by Dosovitskiy et al. [38] is the most classical visual
transformer. Considering that spectra have sequence prop-
erties, Hong et al. [39] proposed a spectral transformer
(SF) from the perspective of spectral sequences. It designed
a grouping embedding module that can learn information
from adjacent HSI spectrum and extract local features of
spectrum. The group-aware hierarchical transformer (GAHT)
proposed by Mei et al. [40] solves the problem of exces-
sive discretization of features extracted by MHSA in HSIC.
In order to better represent advanced semantic information
and extract spectral–spatial features, spectral–spatial feature
tokenization transformer (SSFTT) [41] has been proposed.
SSFTT converts shallow spectral–spatial information into
labeled semantic information through the Gaussian seman-
tic weighting module, which can make the deep semantic
features represented more in line with the distribution char-
acteristics of the sample. Roy et al. [41] proposed the
spectral–spatial morphological attention transformer (Mor-
phFormer), which improves the interaction of structural and
morphological information between HSI Token and CLS
Token through spectral–spatial morphological convolution
operations. Unlike the transformer-based methods mentioned
above, Zhang et al. [42] proposed a convolutional transformer
mixer (CTMixer), which combines the advantages of CNNs
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and transformers to construct a group of parallel residual
convolutions to extract shallow features and uses transformer
to extract deep features, achieving an effective combination of
CNNs and transformers. In order to fully utilize the rich spec-
tral, spatial, and semantic information in HSIs, Xie et al. [48]
proposed a new semantic and spatial–spectral feature fusion
transformer (S3FFT). Spatial attention and channel attention
are used by S3FFT to extract shallow spatial–spectral features,
while transformer-based modules are used by S3FFT to extract
advanced fusion features.

Transformer includes MHSA mechanism and feedforward
neural network (FFN), where MHSA is the core component of
transformer. The high-level semantic information of the image
can be extracted by the transformer, but the HSIC requires not
only the high-level semantic information of the image but also
the extraction of local features of the image [43]. However,
it is difficult for transformer to extract localized features of
an image. In order to better extract the local features of the
image and improve the classification performance of HSIs,
in this article, a dual attention transformer for attention head
interaction (DAHIT) is proposed. Specifically, in order to
enhance the transformer’s ability to represent the local features
of HSIs, DAHIT was designed with two branches for feature
extraction for spatial and spectral information, respectively,
and modules for enhancing the local feature extraction ability
were also designed in each branch. First, in the spectral branch,
a diagonal mask multiscale dual attention module (DAM) is
proposed. DAM masks the attention information on the diago-
nal before SoftMax activation of the attention matrix, allowing
the attention module to pay more attention to the relationships
between adjacent pixels. To avoid information loss caused by
covering diagonal lines, DAM designed an uncovered attention
block. In diagonal masked attention blocks, multiscale feature
extraction is performed on the value vector, enabling diagonal
masked attention blocks to obtain richer feature information.
Then, in the spatial branch, in order to extract spatial local
features, the spatial local bias module (SLBM) is proposed.
SLBM utilizes maximum pooling to extract spatial local prior
information of the image and then cascades and fuses it
with features that have not been extracted locally to add
local prior information to the classification features. Next, this
article proposes an attention head interaction module (AHIM)
for information interaction between different attention heads,
improving the model’s feature representation ability. Finally,
cascade the features extracted from the two branches and
perform HSIC.

The main contributions of this article are given as follows.
1) In this article, a DAM method is designed for extracting

local spectral features. The diagonal mask in DAM is
utilized to enhance attention to the correlation between
different spectral bands and to extract the local contex-
tual relationships of images. To avoid the information
loss, an unmasked attention block is constructed to
supplement attention information.

2) In order to extract spatial local features, an SLBM
is constructed in the spatial branch. By utilizing the
advantage of maximum pooling to extract local features
such as image textures and edges, local prior information

is introduced into the spatial branch to enhance its ability
to extract local features.

3) This article proposes an AHIM module that interacts
with attention information captured between different
attention heads of MHSA. The single distribution of
attention heads is changed into a mixed distribution, and
the representation ability of MHSA is enhanced.

II. METHODOLOGY

The overall framework of the proposed DAHIT is shown
in Fig. 1. In Fig. 1, C represents the number of output
channels extracted by shallow layers in the spectral branch, C1
represents the number of output channels extracted by shallow
layers in the spatial branch, C1/2 is the number of output
channels in the intermediate layer, and C + 1 is the number
of feature channels cascaded by cls-tokens in the spatial
transformer. Assume that the network input is X ∈ RH×W×B ,
where H and W denote the spatial size of the HSIs and B is
the number of spectral bands of the HSIs. First, in the data
preprocessing stage, PCA is performed on the spectral dimen-
sion to obtain X ∈ RH×W×b. b (b < B) represents the number
of spectral bands after PCA dimensionality reduction. Then,
a two-branch network is designed during the feature extraction
stage with spectral and spatial branches. In order to extract
the local information of the image, an SLBM and a multiscale
diagonal mask DAM are constructed in the spatial and spectral
branches, respectively. The AHIM is designed to enhance
the representational ability of the DAHIT model. Finally, the
features extracted from the two branches are cascaded and
then classified through the classification layer to obtain the
predicted label set Y ∈ RH×W

= {yi |y1, y2, . . . , yN }, where
N is the value of maximum label.

A. Attention Head Interaction Module (AHIM)

Currently, most transformer models used in the field of
remote sensing improve their performance in downstream
tasks by combining the powerful feature extraction ability of
convolution, such as S2FTNet [56]. A new attention module
AHIM of DAHIT proposed in this article is designed from the
perspective of attention head interaction. The single low-rank
distribution of a single attention head is transformed into
a mixed distribution of different attention head interactions,
enhancing the model’s feature representation ability.

The multihead mechanism in MHSA can extract attention
information from different subspaces. However, the extracted
attention information exists in isolation from each other, which
largely limits the feature representation ability of MHSA.
Therefore, an AHIM is proposed in this article. Although tra-
ditional MHSAs can learn attention information from different
subspaces, they are isolated from each other. Unlike MHSA,
the information extracted from different subspaces of AHIM
is processed by the AHIM for interaction between different
subspace information. The feature extraction capability of the
network is enhanced by information interaction operations
in different subspaces. AHIM interacts information between
different attention heads on query, key, and value vectors.
Query vectors are used to measure the degree of correlation
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Fig. 1. Overall framework of the proposed DAHIT.

between key vectors at other positions. According to the
correlation between the query vector and the key vector, the
value vector is used for information aggregation. The different
subspace information in the query and key obtained from
traditional MHSA mapping exists in isolation. In AHIM, the
features learned from different subspaces of query and key
are cross mapped to a larger feature representation space.
After being mapped to a larger feature representation space,
information exchange occurs in each subspace. The features in
different subspaces of query and key are not isolated. In order
to ensure sufficient interaction of subspace information, query
and key are once again mapped back from the large fea-
ture representation space to the original subspace. From a
single low-rank distribution of a single attention head to a
mixed distribution of interactions between different attention
heads, the representation ability of the original distribution
is greatly enhanced. Fig. 2 shows the structure diagram
of AHIM.

For AHIM, first, input XT ∈ Rn×c obtained by linear
mapping to Q, K , V ∈ Rh×n×c. Then, in order to enhance
the representation ability of attention, the information between
different attention heads of Q, K , and V is interacted. Through
two 2-D convolutions with different numbers of channels and
convolution kernel size of 1 × 1, the information between
different attention heads is mixed and mapped from the small
attention space to the large one, and the information of
different attention heads completes the preliminary interaction.
In order to fully interact with the information of the attention
head and ensure that the number of attention heads before
and after the interaction is the same, a second interaction
is performed on the attention information after the initial
interaction, mapping from a large attention space to a small

attention space. The calculation process of AHIM is

Q I , K I , VI = HI(Q, K , V ) (1)
HI = δ(δ(x ∗ W1×1 + b1×1) ∗ W1×1 + b1×1) (2)

SA = soft max
(

Q I K I
√

dk

)
VI (3)

AHIM = Concat(SA1, SA2, . . . SAh)Wo (4)

where δ, W1×1, and b1×1 denote the weights and bias of the
nonlinear activation function ReLU, and convolution kernel
size 1 × 1, respectively; Concat(·) denotes the cascade func-
tion; and Wo is the linear mapping weights.

B. Diagonal Mask Multiscale Dual Attention Module (DAM)

MHSA is a core component of transformer, which can
model long-distance dependencies. However, the classifica-
tion task of HSIs requires not only modeling long-distance
dependencies but also modeling local information. Therefore,
in this article, a diagonal mask multiscale DAM is designed.
Unlike other multiscale attention methods, DAM only extracts
multiscale features from values, not from query and key vec-
tors. This is because extracting multiscale features from query
and key vectors can lead to an increase in attention logits,
resulting in model instability and gradient explosion. The value
vector is a feature vector weighted by attention, and multiscale
feature extraction of the value vector not only avoids the
problem of gradient explosion but also achieves the extraction
of rich multiscale features, thus improving the classification
performance of the model. DAM is a dual-branch attention
module, including unmasked attention block and diagonal
masked multiscale attention block. First, diagonal masked
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Fig. 2. Structure diagram of AHIM.

multiscale attention blocks enhance attention to the correlation
between different bands by masking the information on the
diagonal in the attention matrix, which can extract local
spectral information. Then, considering the advantages of mul-
tiscale features, multiscale feature extraction was performed
on the value vector using convolutional blocks of different
scales in the diagonal mask attention block. Query, key, and
value are mapped by MHSA, where query and key calculate
the correlation between different positional features through
vector multiplication, and the value is weighted with attention
based on the calculated correlation. Therefore, in DAM, only
multiscale feature extraction is considered for the value, avoid-
ing unnecessary interference caused by multiscale convolution
on the correlation calculation of query and key, which leads to
excessive attention logit and suppresses the feature extraction
ability of the model. Next, considering that the attention
information on the diagonal in the diagonal masked multiscale
attention block is masked, in order to avoid key information
loss, an unmasked attention block is designed. Unmasked
attention blocks can not only avoid the loss of key information
but also model the long-range dependencies of the spectrum.
Finally, the features extracted from the dual attention branch
are fused through cascading and linear layers. Fig. 3 shows
the structural diagram of DAM.

MHSA obtains the correlation matrix between different
spectral bands by multiplying the query vector and the key
vector and then nonlinearly activates the obtained correlation
matrix using the SoftMax function. After activation, the values
of the correlation matrix are all between 0 and 1, and the
sum of the correlation values in each column is 1. Among
them, the correlation values on the diagonal of the correlation

matrix represent the correlation between the spectral bands
themselves. In order to enhance attention to the correlation
between different spectral bands, we designed a mask to cover
the values of the correlation diagonal. After SoftMax activa-
tion, bands with strong correlation will get larger correlation
values. Fig. 4 shows the activation process of the correlation
matrix.

To avoid the problem of insufficient feature extraction at a
single scale, a 2-D convolution is used to extract multiscale
features from the value vector in diagonal masked attention
blocks. This not only extracts features at different scales but
also extracts local features of the spectrum. The calculation
process is

Vm = MLP(Concat(V 2W3×3 + b3×3, V 2W5×5 + b5×5)) (5)
MLP(x) = δ( fBN(x2W1×1 + b1×1)) (6)

DMSA(Q, K , V ) = soft max

(
DM

(
QK T

)
√

dk

)
Vm (7)

DMMHSA = Concat(DMSA1, DMSA2, . . . , DMSAh)Wo (8)

where W3×3 and W5×5 represent the weights for convolutional
kernel with sizes 3 × 3 and 5 × 5, respectively; b3×3
and b5×5 represent the biases for convolutional kernel with
sizes 3 × 3 and 5 × 5, respectively; δ and fBN represent the
nonlinear activation functions ReLU and batch normalization,
respectively; 2 is the convolution operator; and DM(·) is the
diagonal mask function.

Since the diagonal masked attention block covers the cor-
relation information on the diagonal, to avoid the problem of
critical information being lost due to masking, an unmasked
attention block is designed to extract the global features of
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Fig. 3. Structural diagram of DAM.

Fig. 4. Process of activating the correlation matrix. (a) Process of activating
the correlation matrix of nondiagonal masks. (b) Process of activating the
correlation matrix of diagonal masks.

the spectrum as a separate branch of attention. The unmasked
attention block has no diagonal mask, so the correlation infor-
mation on the diagonal is not lost. The AHIM module is used
in unmasked attention blocks, where different attention heads
interact with each other, resulting in more accurate attention
information extracted from the attention blocks and improving
the model’s expressive ability. Therefore, unmasked attention
blocks can not only extract global features of the spectrum but
also solve the problem of information loss on the diagonal of

diagonally masked attention blocks. The calculation process is
given as follows:

Q I , K I , VI = HI(Q, K , V ) (9)

SA = soft max
(

Q I K T
I

√
dk

)
V (10)

MHSA = Concat(SA1, SA2, . . . , SAh)Wo. (11)

The features obtained from the two attention branches are
fused through cascading and linear layers. The computational
process is

FD A = Concat
(

FA1,FA2
)

(12)

FA = Dropout
(
fgelu(FD A ∗ Wo+bo)

)
(13)

where Dropout(·) and fgelu(·) represent the Dropout function
and the Gaussian error linear cell, respectively, and bo repre-
sents the bias of the linear mapping.

C. Spatial Local Bias Module (SLBM)

Local spatial feature extraction is crucial for HSIC. How-
ever, although traditional transformer methods can model
long-distance dependencies, they cannot effectively extract
local spatial features. Currently, most transformer-based HSIC
methods extract local features, such as texture and edges
through convolution, e.g., HIT [22] and CTMixer [42]. How-
ever, introducing convolution into transformer resulted in a
significant increase in the number of trainable parameters and
an increase in model complexity. This article proposes an
SLBM in the spatial branch. SLBM can enable the network
model to perform local induction bias and allow the model to
pay more attention to local feature extraction of images. Fig. 5
shows the structural diagram of SLBM.
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Fig. 5. Structural diagram of SLBM.

SLBM is a local feature extraction module with a dual-
branch structure. Suppose that the input of SLBM is FT ∈

R65×(h×w), and first, to facilitate the extraction of local features
of the image, the vector FT ∈ R65×(h×w) is converted into a
matrix F ′

T ∈ R65×h×w. Then, maximum pooling with sizes
of 5 × 5 and 3 × 3 is utilized to extract spatial local features.
In order to fully extract the local features of the image, the
local features are first extracted by maximum pooling with a
smaller window 3 × 3 and finally with a larger window 5 × 5.
In the process of extracting local features, residual connections
were added to avoid information loss caused by pooling. The
local feature extraction process of SLBM is

F ′

T = Reshape(FT ) (14)

F
′′

T = f5×5
(
LN
(
Max3×3

(
F ′

T

)))
(15)

Max3×3(x) = f3×3(x) + x (16)

where Reshape(·) denotes the shape transformation function;
f3×3 and f5×5 denote the maximum pooling with size 3 ×

3 and 5 × 5, respectively; and LN(·) denotes the layer
normalization.

Then, the extracted local features are fused into different
channels through point convolution, and the channels are
shrunk to output feature FL ∈ Rc1×h×w. Finally, the extracted
local features FL ∈ Rc1×h×w and F ′

T ∈ R65×h×w are fused by
cascading and linear layers to obtain FLT ∈ R65×(h×w). The
calculation procedure is

FL = δ
(
δ
(

F
′′

T ∗ W1×1 + b1×1

)
∗ W1×1 + b1×1

)
(17)

Fm = Concat
(

FL , F ′

T

)
(18)

FLT = LN(Fm ∗ Wo + bo). (19)

D. Implementation Process

Taking the Salinas dataset as an example, this section
describes the implementation details of the proposed DAHIT
algorithm. The spatial size of the Salinas dataset is 512 ×

217 and the number of spectral bands is 200. First, the input
data X ∈ RS×S×30 are obtained after data preprocessing. Then,

the shallow spatial features are extracted in the spatial branch
by a 2-D convolution block to obtain Xsa ∈ R64×S×S , and the
shallow spectral features are extracted in the spectral branch
by a 3-D convolution block to obtain Xse ∈ RC×S×S×30. The
shallow features Xsa and Xse obtained from the two branches
are input to the transformer of the corresponding branch to
extract the deep features, respectively. For the spectral branch,
X ′

se ∈ R169×64 is obtained by flattening and linearly mapping
Xse ∈ RC×S×S×30, and then, local and global features of the
spectrum are extracted using a transformer with DAM. For
the spatial branch, X ′

sa ∈ R64×64 is obtained by flattening and
linearly mapping Xsa ∈ R64×S×S . Spatial local information
is extracted by SLBM, and then, transformer with AHIM
is utilized to extract spatial global features. The features
extracted from the two branches are dimensionally reduced
through average pooling and maximum pooling, respectively.
Finally, these features are cascaded to obtain Xc ∈ R128,.
Algorithm 1 is the implementation details of the proposed
DAHIT method.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the effectiveness of the proposed
DAHIT method, a series of experiments were conducted on
four commonly used datasets, i.e., Indian Pines (IP) dataset,
Pavia dataset, and Salinas dataset, and compared our method
with some state-of-the-art methods.

A. Dataset Description

To verify the effectiveness of the proposed method, four
widely used HSI datasets were selected in this article, includ-
ing the IP (IP) dataset, the Salinas Valley (SV) dataset
captured by the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) sensor, the University of Pavia (UP) dataset
captured by the Reflective Optical Spectroscopy Imaging Sys-
tem (ROSIS-3) sensor, and Houston 2013 collected by the
HSI analysis team and NCALM on the University of Houston
campus and nearby urban areas (as shown in Tables I–IV). The
IP, Pavia, Salinas, and Houston 2013 datasets were randomly
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Algorithm 1 Process of the DAHIT Method
Inputs: Hyperspectral data X ∈ Rh×w×B , labels Y ∈ Rh×w,
number of bands after PCA b = 30, the spatial size of the
cube s × s, and training sample proportion q%.
Output: The predicted labels for the test dataset.
1: Set the batch size to 64, learning rate lr to 0.005 for Adam
optimizer, training rounds T = 200.
2: The output after PCA is X pca ∈ Rh×w×b.
3: Divide 3D cube X pca ∈ Rh×w×b, and divide the training
samples according to a ratio of q% ratio, and the rest are test
samples.
4: for i = 1 to T do
5: Process the spatial branch with two-dimensional convo-
lutional blocks to obtain Xsa ∈ R64×S×S , and the spectral
branch with three-dimensional convolutional blocks to obtain
Xse ∈ RC×S×S×30.
6: In the spatial branch, perform flattening and mapping on
Xsa ∈ R64×S×S to obtain Xse ∈ RC×S×S×30.
7: Implementation of SLBM.
8: Implements the Transformer with AHIM.
9: In the spectral branch, perform flattening and mapping on
Xse ∈ RC×S×S×30 to obtain X ′

se ∈ R169×64.
10: Implements the Transformer with DAM.
11: Features extracted from spectral and spatial branches are
dimensionally reduced through pooling, and then cascaded to
obtain Xc ∈ R128,1.
12: Output the prediction category for each sample.
end for

TABLE I
CATEGORY NAMES AND SAMPLE DIVISION OF THE INDIAN

PINES DATASET

divided into training samples at training ratios of 10%, 1%,
1%, and 5%, respectively. After dividing the training samples
in the dataset, the remaining samples are used as test samples.

B. Experimental Setup

1) Evaluation Indicators: All experiments in this article
were performed on a platform with an Intel(R) Core (TM)
i9-9900K CPU, an NVIDIA GeForce RTX 3090Ti GPU,
and 128 GB of random access memory, using the framework

TABLE II
CATEGORY NAMES AND SAMPLE DIVISION OF THE PAVIA DATASET

TABLE III
CATEGORY NAMES AND SAMPLE DIVISION OF THE SALINAS DATASET

TABLE IV
CATEGORY NAMES AND SAMPLE DIVISION OF THE

HOUSTON 2013 DATASET

of Pytorch. In addition, three common evaluation indicators
are chosen to evaluate the classification performance of the
mode, i.e., overall accuracy (OA), average accuracy (AA),
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TABLE V
IMPACT OF DIFFERENT MODULES ON OA

and Kappa coefficient. Here, OA represents the ratio of the
number of correctly classified samples to the total number
of samples, AA represents the average classification accuracy
of each category, and the Kappa coefficient is an evaluation
indicator used to measure the robustness of the model.

2) Comparison Methods: In order to validate the effec-
tiveness of the proposed method, a variety of state-of-the-art
networks based on CNNs and transformers are chosen for
comparison, including LS2CM-Res [44], HybridSN [36],
PyResNet [25], MCRSCA [35], VIT [38], SSTN [45],
SSFTT [40], SpectralFormer [39], MorphFormer [41], and
CTMixer [42]. Among them, LS2CM-Res is a lightweight
classification method based on CNN. HybrideSN is a hybrid
2DCNN and 3DCNN CNN network. PyResNet is a resid-
ual CNN classification network consisting of pyramidal
bottleneck residual blocks and convolutional layers. Unlike
the above methods, MCRSCA is a CNN classification
method based on second-order channel attention. VIT is a
classic transformer-based image classification method. Spec-
tralFormer rethinks the problem of HSIC in terms of spectral
sequence properties and designs a transformer-based Spectral-
Former classification network. SSFTT. SSFTT, MorphFormer,
and CTMixer are designed differently from pure transformer
networks such as VIT and SpectralFormer. They are HSIC
networks that combine the advantages of transformers and
CNNs. SSTN is a spectral space transformer that deter-
mines the order of hierarchical and block-level selection in
a network through the factorized architecture search (FAS)
framework.

C. Model Analysis

1) Ablation Experiments: In the proposed DAHIT method,
the network mainly consists of four parts, namely, Basic,
AHIM, DAM, and SLBM. In order to better verify the impact
of each part on the classification performance, some ablation
experiments were conducted on four commonly used datasets
and the experimental results are shown in Table V. Among
them, “

√
” means that the module is contained in the network,

and “-” means that the network does not contain the module.
There are a total of six cases. As can be seen from Table V,
the first case has the lowest OA in the four datasets. The
second case is the addition of AHIM in the first basic network,

Fig. 6. Effect of different learning rates and batch sizes on OA. (a) Exper-
imental results on Indian Pines dataset. (b) Experimental results on Pavia
dataset. (c) Experimental results on Salinas dataset. (d) Experimental results
on Houston 2013 dataset.

Fig. 7. Impact of different input sizes on classification performance.

where significant improvements can be observed across the
four datasets, with the most significant improvement being
achieved in Salinas. The third and fourth cases, respectively,
add DAM and SLBM based on the first case. From Table V,
it can be seen that compared with the first case, the third
and fourth cases have improved on all four datasets. The fifth
case, in which AHIM and DAM are added to the network,
shows the greatest improvement on the Pavia dataset, with a
1.54% improvement in OA values compared to Case II with
only AHIM. In the last case, when the network contains all
components, it can be seen from Table V that the OA values
have achieved the optimal results on all four datasets. The
ablation experiments fully prove the effectiveness of the above
components.
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Fig. 8. OA values on different datasets under different training sample rates. (a)–(d) OA values on the Indian Pines, Pavia, Salinas, and Houston 2013 datasets
under different training sample rates, respectively.

2) Parameter Analysis: During the model training process,
the combination of different batch sizes and learning rates
can have an impact on the classification performance of the
model. In order to select a suitable learning rate and batch
size for DAHIT, some experiments with different learning
rates and batch sizes were conducted on three commonly
used datasets. Among them, the learning rate is selected from
{1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2} and the batch size is
selected from the set {128, 64, 32, 16, 8}. The experimental
results are shown in Fig. 6.

Fig. 6 shows the experimental results on IP, Pavia, Salinas,
and Houston 2013 datasets. Different colors represent different
ranges of OA values, with yellow indicating the highest OA
value and blue indicating the lowest OA value. From Fig. 6,
it can be observed that the model is sensitive to different
learning rates and batch sizes on the same dataset.

In the IP dataset, we can see that the optimal batch size
is 64. When the batch size is 64, the OA value increases

as the learning rate increases and reaches a maximum at a
learning rate of 5e − 3. In the Pavia dataset, the optimal
learning rate and the batch size are 5e−3 and 64, respectively.
In the Salinas dataset, we can see that when the learning
rate is 5e − 3, all batch sizes can achieve good results.
In the Houston 2013 dataset, it can be seen that when the
learning rate of the model is set to 5e − 3, the classification
performance of the model is better than that of other learning
rates, and when the learning rate is 5e − 3, it can be seen
from Fig. 7(d) that as the batch size decreases, the OA
value also shows a gradually decreasing trend. In the Houston
2013 dataset, when the number of batches was set to 64 and
the learning rate was set to 5e −3, the OA value of the model
reaches its optimal value. Therefore, through experiments on
selecting different learning rates and batch sizes for the model,
it can be found that the optimal learning rate and batch
size of the proposed DAHIT method are 5e − 3 and 64,
respectively.
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TABLE VI
CLASSIFICATION RESULTS ON THE INDIAN PINES DATASET (OPTIMAL CLASSIFICATION RESULTS ARE BOLDED)

TABLE VII
CLASSIFICATION RESULTS ON THE PAVIA DATASET (OPTIMAL CLASSIFICATION RESULTS ARE BOLDED)

3) Different Input Space Sizes: The HSIC method proposed
in this article is based on the HSI 3-D cube method. The
spatial size of the input cube has an impact on the classifi-
cation accuracy of the network. In order to select the most
appropriate spatial size of the input cube for the network,
some experiments were conducted with different spatial sizes
on four datasets, i.e., IP, Pavia, Salinas, and Houston 2013.
The selected space sizes for the experiment are 7 × 7, 9 ×

9, 11 × 11, 13 × 13, and 15 × 15, and the experimental
results are shown in Fig. 7. From the Fig. 7, we can see that
in the IP dataset, as the input space size increases, the overall

classification accuracy shows a tendency of first increasing
and then decreasing. It can be seen that the network has
the best classification accuracy when the input spatial size
is 13 × 13. In the Pavia dataset and Houston 2013 dataset,
the classification accuracy is highest when the input spatial
size is 13 × 13. It can be observed that the classification
accuracy of the network at this point is more sensitive to
changes in the input spatial, and the curve is steeper. This
is because Pavia has many small targets, and when the input
space size changes, it is easy to confuse samples of other
categories in the input samples. From Fig. 7, we can see that
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TABLE VIII
CLASSIFICATION RESULTS ON THE SALINAS DATASET (OPTIMAL CLASSIFICATION RESULTS ARE BOLDED)

Fig. 9. Classification maps obtained by each classification method on the Indian Pines dataset. (a) Pseudo-color map; (b) real feature map; and
(c)–(m) classification maps for LS2CM-Res (97.73%), PyResNet (91.87%), HybridSN (95.83%), MCRSCA (92.43), VIT (93.10%), SpectralFormer (81.52%),
SSTN (98.04%), MorphFormer (83.06%), CTMixer (98.07%), SSFTT (98.27%), and DAHIT (98.83%), respectively.

in the Salinas dataset, as the input space size increases, the
classification accuracy increases. At a spatial size of 13 ×

13, the classification accuracy reaches its highest. When the
spatial sizes are 13 × 13 and 15 × 15, the classification

accuracy does not differ significantly. This is because the
network proposed in this article is an HSIC method based
on patch blocks. As the spatial size of the patch input into
the network increases, the spatial information contained within

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on July 31,2024 at 01:48:59 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: ATTENTION HEAD INTERACTIVE DUAL ATTENTION TRANSFORMER FOR HSIC 5523720

TABLE IX
CLASSIFICATION RESULTS ON THE HOUSTON 2013 DATASET (OPTIMAL CLASSIFICATION RESULTS ARE BOLDED)

Fig. 10. Classification maps obtained by each classification method on the Pavia dataset. (a) Pseudo-color map; (b) real feature map; and (c)–(m) classification
maps for LS2CM-Res (97.08%), PyResNet (88.82%), HybridSN (94.46%), MCRSCA (94.91%), VIT (90.21%), SpectralFormer (81.16%), SSTN (92.62%),
MorphFormer (83.73%), CTMixer (96.82%), SSFTT (97.03%), and DAHIT (98.58%), respectively.

the patch becomes richer. Therefore, when the spatial size is
increased from 7 × 7 to 13 × 13, the patch contains more
spatial information that is beneficial for classification. There

are many small targets in the IP and Pavia datasets. Therefore,
when the space size is increased to 15 × 15, there will be
interference information in the input patch, and the network
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Fig. 11. Classification maps obtained by each classification method on the Houston 2013 dataset. (a) Pseudo-color map; (b) real feature map; and
(c)–(m) classification maps for LS2CM-Res (95.66%), PyResNet (94.94%), HybridSN (95.54%), MCRSCA (93.99%), VIT (94.43%), SpectralFormer (90.30%),
SSTN (92.18%), MorphFormer (94.00%), CTMixer (95.40%), SSFTT (97.44%), and DAHIT (97.89%), respectively.

classification accuracy will be reduced. From Fig. 7, it can be
seen that in the Salinas dataset, due to the small number of
small-sized ground cover in Salinas, the fluctuation of the OA

curve of Salinas is small when the spatial size is increased
from 13 × 13 to 15 × 15. In summary, the most suitable
input space size for the proposed method is 13 × 13. In this
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Fig. 12. Classification maps obtained by each classification method on the Salinas dataset. (a) Pseudo-color map; (b) real feature map; and (c)–(m) classification
maps for LS2CM-Res (96.92%), PyResNet (96.18%), HybridSN (97.94%), MCRSCA (91.80%), VIT (93.30%), SpectralFormer (88.01%), SSTN (95.67%),
MorphFormer (86.66%), CTMixer (95.67%), SSFTT (98.45%), and DAHIT (99.09%), respectively.

Fig. 13. t-SNE visualization on the Indian Pines dataset. (a) LS2CM-Res (97.73%). (b) VIT (93.10%). (c) MorphFormer (83.06%). (d) CTMixer (98.07%).
(e) DAHIT (98.83%).

case, the input samples of the network contain more spatial
information, which is beneficial for the network to extract
more discriminative classification features.

4) Different Sample Proportions: In order to better
prove the performance of the proposed model, this arti-
cle compares all methods under different training samples.
The sample proportion set selected in the IP dataset is
{4.0%, 6.0%, 8.0%, 10.0%}, the sample proportion set selected
in the Pavia and Salinas datasets is {0.4%, 0.6%, 0.8%, 1.0%},
and the sample proportion set selected in the Houston
2013 dataset is {2.0%, 3.0%, 4.0%, 5.0%}. The OA values of
the four datasets at different training sample ratios are shown
in Fig. 8. From Fig. 8, it can be seen that the proposed

DAHIT not only achieves satisfactory classification results
with a larger training sample ratio but also has higher OA
values than those of other comparison methods with small
training sample ratio. Specifically, it can be clearly observed in
the Pavia, Salinas, and Houston 2013 datasets that the training
accuracy of the proposed DAHIT method is superior to that of
other methods in any training sample ratio and has significant
advantages. Based on the above analysis, the proposed DAHIT
method has achieved satisfactory classification performance on
four different datasets. The OA values are still relatively high
with a small proportion of training samples. This indicates that
the proposed method can not only provide good classification
performance but also has excellent robustness.
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Fig. 14. t-SNE visualization on the Pavia dataset. (a) LS2CM-Res (97.08%). (b) VIT (90.21%). (c) MorphFormer (83.73%). (d) CTMixer (96.82%).
(e) DAHIT (98.58%).

Fig. 15. t-SNE visualization on the Salinas dataset. (a) LS2CM-Res (96.92%). (b) VIT (93.30%). (c) MorphFormer (86.66%). (d) CTMixer (95.67%).
(e) DAHIT (99.09%).

Fig. 16. t-SNE visualization on the Houston 2013 dataset. (a) LS2CM-Res (95.66%). (b) VIT (94.43%). (c) MorphFormer (94.00%). (d) CTMixer (95.40%).
(e) DAHIT (97.89%).

D. Analysis of Experimental Results
1) Quantitative Analysis: Tables VI–IX show the OA, AA,

Kappa, and the classification accuracy of each category for
all methods on the four datasets of IP, Pavia, and Salinas,
with the best results highlighted in bolded. From Tables V
to VII, it can be seen that the CNN-based method benefited
from its powerful local feature extraction ability and achieved
good classification results in all four datasets. However, due
to the poor performance of CNN in global feature extraction,
CNN-based methods are prone to performance bottlenecks.
In addition, transformer-based methods can extract global
features of images, but the classification results obtained
solely using transformer methods, such as VIT, SF, and
MorphFormer, are not satisfactory. The classification networks
constructed by combining CNN and transformer, such as
CTMixer and SSTN, have achieved good classification results.

From Tables VI to IX, it can be observed that the proposed
classification method outperforms all comparison methods in
the four datasets. This is because the proposed DAHIT method
in this article solves the problem of unsatisfactory performance
of transformer in extracting local features. By introducing spa-
tial local bias and spectral branch attention diagonal mask, the
network’s local feature extraction ability for HSI is enhanced.

We have designed an AHIM to further enhance the feature
representation ability of MHSA. On the IP, Pavia, and Salinas
datasets, the OA values of the proposed DAHIT method were
0.76%, 1.76%, and 3.42% higher than those of the transformer
method with better classification performance, respectively.
In transformer-based classification methods, SF achieved poor
classification results. This is because SF only considered the
spectral properties of HSIs, and the rich spatial information of
HSIs was ignored by SF. SF was unable to pay attention to the
spatial features of HSIs, resulting in poor classification results
on the IP, Salinas, and Pavia datasets. Similarly, compared to
CNN-based methods, the OA values of the proposed DAHIT
method are 1.1%, 1.5%, and 1.15% higher. In the IP dataset,
the proposed network achieves 100% classification accuracy
in categories 1, 4, 13, and 14. In the Pavia dataset, there are
six categories that have the best results among all comparison
methods. In the Salinas dataset, there are six categories with
a classification accuracy of 100%, namely, Categories 1, 2,
3, 6, 7, and 16. From Table IX, it can be observed that the
proposed DAHIT achieved the best OA values for a total of
eight categories in the Houston 2013 dataset and achieved
100% classification results in the tennis course and running
track categories.
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TABLE X
TRAINING TIME (S ) AND TESTING TIME (S ) OF EACH METHOD ON THE FOUR DATASETS

TABLE XI
PARAMS AND FLOPS OF EACH METHOD ON THE FOUR DATASETS

2) Visual Assessment: In order to analyze the classification
performance of the model more intuitively, we visualize the
classification results of each method. Figs. 9–12 show the
classification results of each classification method on IP, Pavia,
Houston 2013, and Salinas datasets, respectively. From Figs. 9
to 12, it can be seen that the visual effect of the proposed
DAHIT method is the closest to the ground maps of all four
datasets. As shown in Fig. 9, the CNN-based classification
method on the IP dataset is the worst for those edge categories
with pretzel noise. The classification method based solely on
transformer cannot extract local features well, so its visualiza-
tion results are also unsatisfactory. The methods combining
CNN and transformer, such as SSTN and CTMixer, have
relatively smooth classification results and almost no salt-and-
pepper noise. For the visualization results of the Pavia dataset,
compared to the CNN method lacking global feature extraction
and the transformer method with weaker local feature extrac-
tion, the method combining CNN and transformer has the
least salt-and-pepper noise in the classification visualization

of the bare soil category, which is closest to the classification
effect of the real bare soil category. Compared with other
classification methods on the Salinas dataset, the proposed
DAHIT method has the closest visualization results to the real
distribution for the Grapes-untrained category.

Figs. 13–16 show the t-SNE visualization results of the
five methods on IP, Pavia, Salinas, and Houston2013 datasets,
respectively. It can be observed that the proposed DAHIT
method achieves satisfactory clustering results. For the IP
dataset, compared with the other four transformer’s methods,
the proposed DAHIT method has smaller distances within
classes and larger distances among classes. Compared with
the pure transformer approach, the method of combining
CNN with transformer benefits from the rich global and
local features and can provide the best t-SNE visualization
results. As shown in Fig. 14, for the Pavia dataset, there is
less category-to-category confusion in our proposed method.
Compared with other methods, the proposed DAHIT can better
cluster Categories 6 and 7, not only without category confusion
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but also with smaller intraclass distances and larger inter-
class distances. For the Salinas dataset, the t-SNE visualization
result of our proposed method is also the best. As shown in
Fig. 16, compared to the other four methods, the proposed
method has the best clustering performance on the Houston
2013 dataset. Different categories were clearly separated, and
the geometric distance between similar categories was small.

3) Model Complexity Analysis: DAHIT achieved satisfac-
tory classification results. In order to evaluate the model
complexity of DAHIT, a time complexity analysis was con-
ducted on the IP, Pavia, Salinas, and Houston 2013 datasets
from the perspectives of training and testing time. Table X
shows the time consumption of DAHIT on four datasets.
As shown in Table X, the training time of the proposed
method on the Pavia dataset and Salinas dataset is the short-
est compared to other methods. On the Pavia and Houston
2013 datasets, DAHIT outperformed other methods in terms of
testing time. On the IP dataset, the training time of DAHIT is
slightly longer than that of the LS2CM Res and VIT methods,
and the testing time of it is also slightly longer than that of
the SSFTT method. In summary, the method proposed in this
article not only has satisfactory classification performance and
good robustness but also has relatively low model complexity.

In order to further analyze the complexity of the model,
the floating-point operations (FLOPs) and parameter quantity
of all methods were provided, as shown in Table XI. From
Table XI, it can be observed that compared to transformer-
based methods, most CNN-based methods have higher FLOPs.
This is because CNN-based models require a large number of
convolutional layers to extract rich local features of images,
which leads to larger FLOPs. Transformer-based methods
can extract global semantic information of images through
MHSA and feedforward networks (FFNs). Compared with
convolution-based methods, the FLOPs and parameter quan-
tity of the proposed method are lower than those of all
convolution-based methods except for LS2CM-Res. This is
because LS2CM-Res is specially designed from a lightweight
network perspective and has lower model complexity. Com-
pared with transformer-based methods, the proposed DAHIT
method outperforms more than half of the transformer methods
in terms of FLOPs and Params. Specifically, compared to
CTMixer that uses convolution to extract local features from
images, the method proposed in this article exhibits significant
advantages in both FLOPs and parameter quantity.

IV. CONCLUSION

For the classification task of HSI, not only global features
but also local features are particularly important. Transformer
can extract global features of images, but its performance in
local feature extraction is not very good. This article proposes
a DAHIT method for HSIC. First, an SLBM module was
designed in the spatial branch for extracting spatial local fea-
tures of HSIs. To enhance the representation ability of MHSA,
an AHIM module was constructed for information interaction
between different attention heads. Then, in order to extract
the local features of the spectrum and enhance the attention
of the attention module to the correlation between different
spectral bands, a DAM module was carefully designed in

the spectral branch. Finally, the features extracted from the
two branches are cascaded and fused. Extensive experiments
have shown that our proposed DAHIT achieves excellent
classification performance for HSIs compared to other state-
of-the-art classification methods. In the future, we will further
optimize transformer’s ability to extract local features of HSIs,
introducing the local bias of convolution into the transformer
network, and strive to achieve more excellent HSIC perfor-
mance.
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